煤矸多目标区域灰度特征及纹理特征提取

针对图像多目标区域进行灰度提取纹理提取图像如图所示:

Snipaste_2024-04-18_16-08-22.png

算法设计未采用函数调用可直接运行:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
clear all,clc;
%读录图像
im = imread( '/Users/yons/Desktop/目标区域分别提取并统计灰度值/gan.png' );
figure;
subplot(1,2,1);imshow(im);title('原始图像');
%转灰度图像
im=rgb2gray(im);
subplot(1,2,2);imshow(im);title('灰度图像');
%对灰度图像进行邻域3x3二维中值滤波
im1=medfilt2(im,[3 3]);
figure;subplot(1,2,1);imshow(im1);title('3x3-中值滤波');
%寻找灰度图像最佳阈值,"Otsu"法阈值分割图像,并进行二值化处理
level=graythresh(im1);
im2=im2bw(im1,level);
subplot(1,2,2);imshow(im2);title('二值化');
im3 = edge(im2,'Canny');
figure,imshow(im3);
%标记连通区域
im4 = bwlabel(im3);
q = max(max(im4));
[r,c] = size(im4);
%构建元胞数组
A = cell(1,q+1);
A{1,1} = im4;
%分离连通区域
for p = 1:q
im4 = bwlabel(im3);
for i = 1:r
for j = 1:c
if im4(i,j) ~= p
im4(i,j) = 0;
end
end
end
A{1,p} = im4;
end
%循环输出连通区域
for i = 1:q
figure,imshow(A{1,i});
end
%多目标连通区域灰度值信息提取
k = cell(1,q);
for i = 1:q
k{1,i} = ones(r,c);
end

for p = 1:q

for i = 1:r
for j = 1:c

if sum(A{1,p}(i,1:j)) == 0
k{1,p}(i,1:j) = 0;
end

if sum(A{1,p}(i,j:c)) == 0
k{1,p}(i,j:c) = 0;
end

if A{1,p}(i,j) == 1
k{1,p}(i,j) = 0;
end
end
end
end

%T为提取目标区域灰度矩阵
T = cell(1,q);
for p = 1:q
T{1,p} = zeros(r,c);
end

for p = 1:q
for i = 1:r
T{1,p}(i,:) = double(im(i,:)) * diag(k{1,p}(i,:));
end
end

%%
gray = cell(1,q);

for p = 1:q
gray{1,p} = T{1,p};
end

for p = 1:q
[M,N] = size(T{1,p});
for i = 1:M
for j = 1:N
for n = 1:256/16
if (n-1)*16<=gray{1,p}(i,j)&&gray{1,p}(i,j)<=(n-1)*16+15
gray{1,p}(i,j) = n-1;
end
end
end
end
%-----------------------------------------------------------
% 计算0,45,90,135方向上灰度共生矩阵,距离为1
%-----------------------------------------------------------
Q = zeros(16,16,4);
for m = 1:16
for n = 1:16
for i = 1:M
for j= 1:N
if j < N && gray{1,p}(i,j) == m - 1 && gray{1,p}(i,j+1) == n - 1
Q(m,n,1) = Q(m,n,1) + 1;
Q(m,n,1) = Q(m,n,1);
end
if i > 1 && j < N && gray{1,p}(i,j) == m - 1 && gray{1,p}(i-1,j+1) == n - 1
Q(m,n,2) = Q(m,n,2) + 1;
Q(m,n,2) = Q(m,n,2);
end
if i < M && gray{1,p}(i,j) == m - 1 && gray{1,p}(i+1,j) == n - 1
Q(m,n,3) = Q(m,n,3) + 1;
Q(m,n,3) = Q(m,n,3);
end
if i < M && j < N && gray{1,p}(i,j) == m - 1 && gray{1,p}(i+1,j+1) == n - 1
Q(m,n,4) = Q(m,n,4) + 1;
Q(m,n,4) = Q(m,n,4);
end
end
end
if m == n
Q(m,n,:) = Q(m,n,:)*2;
end
end
end
%disp('0度时的灰度共生矩阵:');
%disp(Q(:,:,1));
%disp('45度时的灰度共生矩阵:');
%disp(Q(:,:,2));
%disp('90度时的灰度共生矩阵:');
%disp(Q(:,:,3));
%disp('135度时的灰度共生矩阵:');
%disp(Q(:,:,4));
%-----------------------------------------------------------
% 灰度共生矩阵归一化处理
%-----------------------------------------------------------
for n = 1:4
Q(:,:,n) = Q(:,:,n)/sum(sum(Q(:,:,n)));
end
[kk,ll,mm] = size(Q);

%-----------------------------------------------------------
%对共生矩阵计算能量、熵、惯性矩、相关4个纹理参数
%-----------------------------------------------------------
H = zeros(1,mm);
I = H;
Ux = H;
Uy = H;
deltaX= H;
deltaY = H;
C = H;
for n = 1:mm
E(n) = sum(sum(Q(:,:,n).^2)); %能量
for i = 1:kk
for j = 1:ll
if Q(i,j,n)~=0
H(n) = -Q(i,j,n)*log(Q(i,j,n))+H(n); %熵
end
I(n) = (i-j)^2*Q(i,j,n)+I(n); %惯性矩

Ux(n) = i*Q(i,j,n)+Ux(n); %相关性中μx
Uy(n) = j*Q(i,j,n)+Uy(n); %相关性中μy
end
end
end
for n = 1:mm
for i = 1:kk
for j = 1:ll
deltaX(n) = (i-Ux(n))^2*Q(i,j,n)+deltaX(n); %相关性中σx
deltaY(n) = (j-Uy(n))^2*Q(i,j,n)+deltaY(n); %相关性中σy
C(n) = i*j*Q(i,j,n)+C(n);
end
end
C(n) = (C(n)-Ux(n)*Uy(n))/deltaX(n)/deltaY(n); %相关性
end

%--------------------------------------------------------------------------
%求能量、熵、惯性矩、相关的均值和标准差作为最终8维纹理特征
%--------------------------------------------------------------------------
a1 = mean(E);
b1 = sqrt(cov(E));

a2 = mean(H);
b2 = sqrt(cov(H));

a3 = mean(I);
b3 = sqrt(cov(I));

a4 = mean(C);
b4 = sqrt(cov(C));

%sprintf('0,45,90,135方向上的能量依次为: %f, %f, %f, %f',E(1),E(2),E(3),E(4)) % 输出数据;
%sprintf('0,45,90,135方向上的熵依次为: %f, %f, %f, %f',H(1),H(2),H(3),H(4)) % 输出数据;
%sprintf('0,45,90,135方向上的惯性矩依次为: %f, %f, %f, %f',I(1),I(2),I(3),I(4)) % 输出数据;
%sprintf('0,45,90,135方向上的相关性依次为: %f, %f, %f, %f',C(1),C(2),C(3),C(4)) % 输出数据;
wen_li{1,p} = [0,45,90,135;a1,a2,a3,a4];
end

%求取目标区域灰度值平均值
MEAN = cell (1,q);

for p = 1:q
m = nnz(T{1,p});
MEAN{1,p} = sum(sum(T{1,p}))/m;
end

运行代码输出图像单目标灰度均值以及纹理特征,可从元胞数组中查看参量。